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Chapter 4

ORBITAL MECHANICS

Understanding orbital motion requires a flight of imagination; one must become a space
traveler, removed from the restrictive perspective of Earth’s surface.  The vantage point of
space can be visualized through the motion Kepler described and by comprehending the
reasons for that motion as described by Newton.  Thus, the objectives here are to gain a
conceptual understanding of orbital motion and become familiar with common terms
describing that motion.

A HISTORY OF
THE LAWS OF MOTION1

Early Cosmology

This generation is far too
knowledgeable to perceive the universe as
early man saw it.  Each generation uses
the knowledge of the previous generation
as a foundation to build upon in the ever
continuing search for comprehension.
When the foundation is faulty, the tower
of understanding eventually crumbles and
a new building proceeds in a different
direction.  Such was the case during the
dark ages in medieval Europe and the
Renaissance.

The Babylonians, Egyptians and
Hebrews each had various ingenious
explanations for the movements of the
heavenly bodies.  According to the
Babylonians, the Sun, Moon and stars
danced across the heavenly dome entering
through doors in the East and vanishing
through doors in the West.  The
Egyptians explained heavenly movement
with rivers in a suspended gallery upon
which the Sun, Moon and planets sailed,
entering through stage doors in the East
and exiting through stage doors in the
West.

Though one may view these ancient
cosmologies with a certain arrogance and
marvel at the incredible creativity by

                                                       
1Much of this information comes from Arthur
Koestler’s The Sleepwalkers.

which they devised such a picture of the
universe, their observations were
amazingly precise.  They computed the
length of the year with a deviation of less
than 0.001% from the correct value, and
their observations were accurate, enabling
them to precisely predict astronomical
events.  Although based on mythological
assumptions, these cosmological theories
“worked.”

Greece took over from Babylon and
Egypt, creating a more colorful universe.
However, the 6th century BC (the century
of Buddha, Confucius and Lâo Tse, the
Ionian philosophers and Pythagoras) was
a turning point for the human species.  In
the Ionian school of philosophy, rational
thought was emerging from the
mythological dream-world.  It was the
beginning of the great adventure in which
the Promethean quest for natural
explanations and rational causes would
transform humanity more radically than in
the previous two hundred thousand years.

Astronomy

Many early civilizations recognized the
pattern and regularity of the stars’ and
planets’ motion and made efforts to track
and predict celestial events.  The
invention and upkeep of a calendar
required at least some knowledge of
astronomy.  The Chinese had a working
calendar at least by the 13th or 14th
century BC. They also kept  accurate
 records for things such as comets, meteor
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showers, fallen meteorites and other
heavenly phenomena.  The Egyptians
were able to roughly predict the flooding
of the Nile every year: near the time when
the star Sirius could be seen in the dawn
sky, rising just before the Sun.  The
Bronze Age peoples in northwestern
Europe left many monuments indicating
their ability to understand the movement
of celestial bodies.  The best known is
Stonehenge, which was used as a crude
calendar.

The early Greeks initiated the orbital
theories, postulating the Earth was fixed
with the planets and other celestial bodies
moving around it; a geocentric universe.
About 300 BC, Aristarchus of Samos
suggested that the Sun was fixed and the
planets, including the Earth, were in
circular orbits around the Sun; a
heliocentric universe.  Although
Aristarchus was more correct (at least
about a heliocentric solar system), his
ideas were too revolutionary for the time.
Other prominent astronomers/philosophers
were held in higher esteem and, since they
favored the geocentric theory,
Aristarchus’ heliocentric theory was
rejected and the geocentric theory
continued to be predominately accepted.

Aristotle, one of the more famous
Greek philosophers, wrote encyclopedic
treatises on nearly every field of human
endeavor.  Aristotle was accepted as the
ultimate authority during the medieval
period and his views were upheld by the
Roman Catholic Church, even to the time
of Galileo.  However, his expositions in
the physical sciences in general, and
astronomy in particular, were less sound
than some of his other works.
Nevertheless, his writings indicate the
Greeks understood such phenomena as
phases of the Moon and eclipses at least
in the 4th century BC.  Other early Greek
astronomers, such as Eratosthenes and
Hipparchus, studied the problems
confronting astronomers, such as:  How
far away are the heavenly bodies?  How
large is the Earth?  What kind of
geometry best explains the observations

of the planets’ motions and their
relationships?

The Greeks were under the influence
of Plato’s metaphysical understanding of
the universe, which stated:

“The shape of the world must be a
perfect sphere, and that all motion must
be in perfect circles at uniform speed.”

This circular motion was so
aesthetically appealing that Aristotle
promoted this circular motion into a
dogma of astronomy.  The
mathematicians’ task was now to design a
system reducing the apparent
irregularities of planetary motion to
regular motions in perfectly fixed circles.
This task would keep them busy for the
next two thousand years.

Perhaps the most elaborate and fanciful
system was one Aristotle constructed
using fifty-four spheres to account for the
motions of the seven planets.2  Despite
Aristotle’s enormous prestige, this system
was so contrived that it was quickly
forgotten.  In the 2nd century AD,
Ptolemy modified and amplified the
geocentric theory explaining the apparent
motion of the planets by replacing the
“sphere inside a sphere” concept with a
“wheel inside a wheel” arrangement.
According to his theory, the planets
revolve about imaginary planets, which in
turn revolve around the Earth.  Thus, this
theory employed forty wheels:  thirty-nine
to represent the seven planets and one for
the fixed stars.

Even though Ptolemy’s system was
geocentric, this complex system more or
less described the observable universe and
successfully accounted for celestial
observations.  With some later
modifications, his theory was accepted
with absolute authority throughout the
Middle Ages until it finally gave way to
the heliocentric theory in the 17th
century.
                                                       
2In this instance the seven “planets” include the
Sun, Moon, Mercury, Venus, Mars, Jupiter, and
Saturn.
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Modern Astronomy

Copernicus

In the year 1543, some 1,800 years
after Aristarchus proposed a heliocentric
system, a Polish monk named Nicolas
Koppernias (better known by his Latin
name, Copernicus) revived the
heliocentric theory when he published De
Revolutionibus Orbium Coelestium (On
the Revolutions of the Celestial
Spheres).  This work represented an
advance, but there were still some
inaccuracies.  For example, Copernicus
thought that the orbital paths of all
planets were circles with their centers
displaced from the center of the sun.

Copernicus did not prove that the
Earth revolves about the sun; the
Ptolemic system, with some adjustments,
could have accounted just as well for the
observed planetary motion.  However, the
Copernican system had more ascetic
value.  Unlike the Ptolemic system, it was
elegant and simple without having to
resort to artful wheel upon wheel
structures.  Although it upset the church
and other ruling authorities, Copernicus
made the Earth an astronomical body,
which brought unity to the universe.

Tycho De Brahe

Three years after the publication of De
Revolutionibus, Tyge De Brahe was born
to a family of Danish nobility.  Tycho, as
he came to be known, developed an early
interest in astronomy and made significant
astronomical observations as a young
man.  His reputation gained him royal
patronage and he was able to establish an
astronomical observatory on the island of
Hveen in 1576.  For 20 years, he and his
assistants carried out the most complete
and accurate astronomical observations
yet made.

Tycho was a despotic ruler of Hveen,
which the king could not sanction.  Thus,
Tycho fell from favor, leaving Hveen in
1597 free to travel.  He ended his travels

in Prague in 1599 and became Emperor
Rudolph II’s Imperial Mathematicus.  It
was during this time that a young
mathematician, who would also become
an exile from his native land, began
correspondence with Tycho.  Johannes
Kepler joined Tycho in 1600 and, with no
means of self-support, relied on Tycho for
material well being.

Tycho and Kepler’s relationship was
far from a great friendship.  It was short
(eighteen months) and fraught with
controversy.  This brief relationship ended
when Tycho De Brahe, the meticulous
observer who introduced precision into
astronomical measurement and
transformed the science, became
terminally ill and died in 1601.

Kepler

Johannes Kepler was born in
Wurttemberg, Germany, in 1571.  He
experienced an unstable childhood that,
by his own accounts, was unhappy and
ridden with sickness.  However, Kepler’s
genius propelled him through school and
guaranteed his continued education.

Kepler studied theology and learned
the principles of the Copernican system.
He became an early convert to the
heliocentric hypothesis, defending it in
arguments with fellow students.

In 1594, Kepler was offered a position
teaching mathematics and astronomy at
the high school in Gratz.  One of his
duties included preparing almanacs
providing astronomical and astrological
data.  Although he thought astrology, as
practiced, was essentially quackery, he
believed the stars affected earthly events.

During a lecture having no relation to
astronomy, Kepler had a flash of insight;
he felt with certainty that it was to guide
his thoughts throughout his cosmic
journey.  Kepler had wondered why there
were only six planets and what
determined their separation.  This flash of
insight provided the basis for his
revolutionary discoveries.  Kepler
believed that each orbit was inscribed
within a sphere that enclosed a perfect
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solid3 within which existed the next
orbital sphere and so on for all the
planets.  He did not believe these solids
actually existed, but rather, God created
the planetary orbits in relation to these
perfect solids.  However, Kepler made the
errant connection that this was the basis
of the divine plan, because there are only
five regular solids and there were only six
known planets.

Kepler explained his pseudo-
discoveries in his first book, the
Mysterium Cosmographicum (Cosmic
Mystery).  Although based on faulty
reasoning, this book became the basis for
Kepler’s later great discoveries.  The
scientific and metaphysical communities
at the time were divided as to the worth
of this first work.  Kepler continued
working toward proving his theory and in
doing so, found fault with his enthusiastic
first book.  In his attempts at validation,
he came to realize he could only continue
with Tycho’s data—but he did not have
the means to travel and begin their
relationship.  Fortunately for the
advancement of astronomy, the power of
the Catholic church in Gratz grew to a
point where Kepler, a Protestant, was
forced to quit his post.  He then traveled
to Prague where his short tumultuous
relationship with Tycho began.  On 4
February 1600, Kepler finally met Tycho
De Brahe and became his assistant.

Tycho originally set Kepler to work on
the motion of Mars, while he kept the
majority of his astronomical data secret.
This task was particularly difficult
because Mars’ orbit is the second most
eccentric (of the then known planets) and
defied the circular explanation.  After
many months and several violent
outbursts, Tycho sent Kepler on a mission
to find a satisfactory theory of planetary
                                                       
3A perfect solid is a three dimensional geometric
figure  whose faces are identical and are regular
polygons.  These solids are:  (1) tetrahedron
bounded by four equilateral triangles, (2) cube,
(3) octahedron (eight equilateral triangles), (4)
dodecahedron (twelve pentagons), and (5) icosa-
hedron (twenty equilateral triangles).

motion (the study of Mars continued to
be dominant in this quest); one compatible
with the long series of observations made
at Hveen.

After Tycho’s death in 1601, Kepler
became Emperor Rudolph’s Imperial
Mathematicus.  He finally obtained
possession of the majority of Tycho’s
records, which he studied for the next
twenty-five years of his life.

Kepler’s earth-shaking discoveries
came in anything but a straightforward
manner.  He struggled through tedious
calculations for years just to find that they
led to false conclusions.  Kepler stumbled
upon his second law (which is actually the
one he discovered first) through a
succession of canceling errors.  He was
aware of these errors and in his
explanation of why they canceled he got
hopelessly lost.  In the struggle for the
first law (discovered second), Kepler
seemed determined not to see the
solution.  He wrote several times telling
friends that if the orbits were just an
ellipse, then all would be solved, but it
wasn’t until much later that he actually
tried an ellipse.  In his frustrating
machinations, he derived an equation for
an ellipse in a form he did not recognize4.
He threw out his formula (which
described an ellipse) because he wanted to
try an entirely new orbit:  an ellipse5.

 Kepler's 1st Law
(Law of Ellipses)

The orbits of the planets are
ellipses with the Sun at one
focus.

                                                       
4In modern denotation, the formula is:

R=1+ecos(ββ )
where R is the distance from the Sun, ββ  the lon-
gitude referred to the center of the orbit, and e the
eccentricity.
5After accepting the truth of his elliptical hy-
pothesis, Kepler eventually realized his first
equation was also an ellipse.
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Kepler’s 1st Law
(Law of Ellipses)

The orbits of the planets are
ellipses with the Sun at one
focus.

Later Sir Isaac Newton found that
certain refinements had to be made to
Kepler’s first law to account for
perturbing influences.  Neglecting such
influences (e.g., atmospheric drag, mass
asymmetry and third body effects), the
law applies accurately to all orbiting
bodies.

Figure 4-1 shows an ellipse where Fl
is one focus and F2 is the other.  This
depiction illustrates that, by definition,
an ellipse is constructed by joining all
points which have the same combined
distance (D) between the foci.

The maximum diameter of an ellipse
is called its major axis; the minimum
diameter is the minor axis.  The size of
an ellipse depends in part upon the
length of its major axis.  The shape of an
ellipse is denoted by eccentricity (e)
which is the ratio of the distance
between the foci to the length of the
major axis (see Orbit Geometry section).

The path of ballistic missiles (not
including the powered and reentry
portion) are also ellipses; however, they
happen to intersect the Earth’s surface
(Fig.  4-2).

With Kepler’s second law, he was on
the trail of Newton’s Law of Universal
Gravitation.  He was also hinting at
calculus, which was not yet invented.

Kepler’s 2nd Law
(Law of Equal Areas)

The line joining the planet to
the Sun sweeps out equal

areas in equal times.

Based on this observation, Kepler
reasoned that a planet’s speed depended
on its distance to the Sun.  He drew the
connection that the Sun must be the
source of a planet’s motive force.

With circular orbits, Kepler’s second
law is easy to visualize (Fig.  4-3).  In a
circular orbit a satellite’s speed and

radius both remain constant, therefore it
travels over the same arc length in equal
times and thus equal areas.
All closed orbits are elliptical.  They
have some eccentricity that is non-zero,
rather than zero, which would make it
circular1.  Kepler’s second law isn’t
quite

                                                       
1That is, naturally occurring orbits have some
non-zero eccentricity.  A circle is a special form
of an ellipse where the eccentricity is zero. Most

B a llis tic M issi le

Fig.  4-2.  Ballistic Missile Path

Fig.  4-1.  Ellipse with axis

Fig.  4-3.  Kepler ’s 2nd Law
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as obvious when applied to ellipses.
Figure  4-4 depicts an elliptical orbit with
two areas which are equal but not
symmetric.  As (Fig.  4-4) shows, the
closer a planet is to the Sun (also, any
satellite to its prime mover, like the Earth)
the faster it travels7.

Kepler discovered his third law ten
years after he published the first two in
Astronomia Nova (New Astronomy).  He

had been searching for a relationship
between a planet’s period and its distance
from the Sun since his youth.  Kepler was
looking at harmonic relationships in an
attempt to explain the relative planetary
spacing.  After many false steps and
dogged persistence, he fell upon his
famous relationship:

Kepler’s 3rd Law
(Law of Harmonics)

The squares of the periods of
revolution for any two planets
are to each other as the cubes

                                                                             
artificial satellites are predominately in orbits
that are as close to circular as we can achieve.
7Kepler’s second law is basically stating that
angular momentum remains constant, but the
concept of angular momentum wasn’t invented
when he formulated his laws.

of their mean distances from
the Sun.8

Kepler’s 3rd Law directly relates the
square of the period to the cube of the
mean distance for orbiting objects.  He
believed in an underlying harmony in
nature.  It was a great personal triumph
when he found a simple algebraic
relationship, which he believed to be
related to musical harmonics.

Isaac Newton

On Christmas Day 1642, the year
Galileo died, there was born a male infant
tiny and frail, Isaac Newton—who would
alter the thought and habit of the world.

Newton stood upon the shoulders of
those who preceded him; he was able to
piece together Kepler’s laws of planetary
motion with Galileo’s ideas of inertia and
physical causes, synthesizing his laws of
motion and gravitation.  These principles
are general and powerful, and are
responsible for much of our technology
today.

Newton took a circuitous route in
formulating his hypotheses.  In 1665, an
outbreak of the plague forced the
University of Cambridge to close for two
years.  During those two years, the 23-
year-old genius conceived the law of
gravitation, the laws of motion and the
fundamental concepts of differential
calculus.  Due to some small
discrepancies in his explanation of the
Moon’s motion, he tossed his papers
aside; it would be 20 years before the
world would learn of his momentous
discoveries.

Edmund Halley asked the question that
brought Newton’s discoveries before the
world.  Halley was visiting Newton at
Cambridge and posed the question:  “If

                                                       

8In mathematical terms:
P
a

k
2

3
= , where P is

the orbital period, a is the semi-major axis,
which is the average orbital distance, and k is a
constant.

Fig.  4-4.  An Elliptical Orbit
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the Sun pulled on the planets with a force
inversely proportional to the square of the
distances, in what paths ought they to
go?”  To Halley’s astonishment, Newton
replied without hesitation:  “Why in
ellipses, of course.  I have already
calculated it and have the proof among
my papers somewhere.”  Newton was
referring to his work during the plague
outbreak 20 years earlier and in this
casual way, his great discovery was made
known to the world.

Halley encouraged his friend to
completely develop and publish his
explanation of planetary motion.  The
result appeared in 1687 as The
Mathematical Principles of Natural
Philosophy, or simply the Principia.

Newton’s Laws

As we’ve seen, many great thinkers
were on the edge of discovery, but it was
Newton that took the pieces and
formulated a grand view that was
consistent and capable of describing and
unifying the mundane motion of a “falling
apple” and the motion of the planets:9

Newton’s 1st Law
(Inertia)

Every body continues in a state
of uniform motion in a straight
line, unless it is compelled to
change that state by a force
imposed upon it.

This concise statement encapsulates the
general relationship between objects and
causality.  Newton combined Galileo’s
idea of inertia with Descartes’ uniform
motion (motion in a straight line) to
                                                       
9We still essentially see the Universe in Newto-
nian terms; Einstein’s general relativity and
quantum mechanics are a modification to New-
tonian mechanics, but have yet to be unified into
a single grand view.

create his first law.  If an object deviates
from rest or motion in a straight line with
constant speed, then some force is being
applied.

Newton’s first law describes
undisturbed motion; inertia, accordingly,
is the resistance of mass to changes in its
motion.  His second law describes how
motion changes.  It describes the
relationship between the impressed forces,
the masses of objects and the resulting
motion:

Newton’s 2nd Law
(Momentum)

When a force is applied to a
body, the time rate of change
of momentum is proportional
to, and in the direction of, the
applied force.

motion.  Momentum ( vp ) is a vector
quantity defined as the product of an

object’s mass (m) and its relative
velocity10 ( vv ).

When we take the time rate of change
of an object’s momentum (essentially
differentiate momentum with respect to
time, dp dtv ), this second law becomes
Newton’s famous equation:11

Newton continued his discoveries and
with his third law, completed his grand
view of motion:

                                                       
10Velocity is an inertial quantity and, as such, is
relative to the observer.  Momentum, as meas-
ured, is also relative to the observer.
11The differentiation of momentum with respect

to time actually gives 
v v vF = mv + mv& &  where &m

is the rate of change of mass and 
v&v is the rate of

change of velocity which is acceleration 
v
a .  In

simple cases we assume that the mass doesn’t
change, so &m = 0  and the equation reduces tov v v vF = mv F = ma& ⇒ .  For an accelerating
booster the &m term is not zero.

v vF = ma

v v
p = m v
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Newton’s 3rd Law
(Action-Reaction)

For every action there is a
reaction that is equal in
magnitude but opposite in
direction to the action.

This law hints at conservation of
momentum; if forces are always balanced,
then the objects experiencing the opposed
forces will change their momentum in
opposite directions and equal amounts.

Newton combined ideas from various
sources in synthesizing his laws.  Kepler’s
laws of planetary motion were among his
sources and provided large scale
examples.  Newton synthesized his
concept of gravity, but thought that one
must be mad to believe in a force that
operated across a vacuum with no
material means of transport.

Newton theorized gravity, which he
believed to be responsible for the “falling
apples” and the planetary motion, even
though he could not explain gravity or
how it was transmitted.  In essence,
Newton developed a system that
described man’s experience with his
environment.

Universal Gravitation

Every particle in the universe
attracts every other particle with
a force that is proportional to the
product of the masses and
inversely proportional to the
square of the distance between
the particles.

Where Fg is the force due to
gravity, G is the proportionality
constant, M1 and m2 the masses
of the central and orbiting bodies,
and D the distance between the
two bodies.

Newton’s Derivation of Kepler’s Laws

Kepler’s laws of planetary motion are
empirical (found by comparing vast
amounts of data in order to find the
algebraic relationship between them); they
describe the way the planets are observed
to behave.  Newton proposed his laws as
a basis for all mechanics.  Thus Newton
should have been able to derive Kepler’s
laws from his own, and he did:

Kepler’s First Law:  If two
bodies interact gravitationally,
each will describe an orbit
that can be represented by a
conic section about the
common center of mass of the
pair. In particular, if the
bodies are permanently
associated, their orbits will be
ellipses. If they are not
permanently associated, their
orbits will be hyperbolas.

Kepler’s Second Law:  If two
bodies revolve about each
other under the influence of a
central force (whether they
are in a closed orbit or not), a
line joining them sweeps out
equal areas in the orbit plane
in equal intervals of time.

Kepler’s Third Law:  If two
bodies revolve mutually about
each other, the sum of their
masses times the square of
their period of mutual
revolution is in proportion to
the cube of their semi-major
axis of the relative orbit of one
about the other.

ORBITAL MOTION

Newton’s laws of motion apply to all
bodies, whether they are scurrying across
the face of the Earth or out in the vastness
of space.  By applying Newton’s laws one
can predict macroscopic events with great
accuracy.

F G M m
Dg

1 2
2

= 
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Motion

According to Newton’s first law,
bodies remain in uniform motion unless
acted upon by an external force; that
uniform motion is in a straight line.  This
motion is known as inertial motion,
referring to the property of inertia, which
the first law describes.

Velocity is a relative measure of
motion.  While standing on the surface of
the Earth, it seems as though the
buildings, rocks, mountains and trees are
all motionless; however, all of these
objects are moving with respect to many
other objects (Sun, Moon, stars, planets,
etc.).  Objects at the equator are traveling
around the Earth’s axis at approximately
1,000 mph; the Earth and Moon system is
traveling around the Sun at 66,000 mph;
the solar system is traveling around the
galactic center at approximately 250,000
mph, and so on and so forth.

The only way motion can be
experienced is by seeing things change
position with respect to one’s location.
Change in motion may be experienced by
feeling the compression or tension within
the body due to acceleration (sinking in
the seat or being held by seat belts).  In
some cases, acceleration cannot be felt, as
in free-fall.  Acceleration is felt when the
forces do not operate equally on every
particle in the body; the compression or
tension is sensed in the body’s tissues.
With this feeling and other visual clues,
any change in motion that has occurred
may be detected.  Gravity is felt as
opposing forces and the resulting
compression of bodily tissues.  In free-
fall, acceleration is not felt because every
particle in the body is experiencing the
same force and so there is no tissue
compression or tension; thus, no physical
sensation.  What is felt is the sudden
change from tissue compression to a state
of no compression.

According to Newton’s second law,
for a body to change its motion there
must be a force imposed upon it.
Everyone has experience with changing

objects’ motion or compensating for
forces that change their motion.  An
example is playing catch—when throwing
or catching a ball, its motion is altered;
thus, gravity is compensated for by
throwing the ball upward by some angle
allowing gravity to pull it down, resulting
in an arc.  When the ball leaves the hand it
starts accelerating toward the ground
according to Newton’s laws (at sea level
on the Earth the acceleration is
approximately 9.81 m/s or 32.2 ft/s).  If
the ball is initially motionless, it will fall
straight down.  However, if the ball has
some horizontal motion, it will continue in
that motion while accelerating toward the
ground.  Figure  4-5 shows a ball
released with varying lateral (or
horizontal) velocities.

In Figure 4-5, if the initial height of

the ball is approximately 4.9 meters (16.1
ft) above the ground, then at sea level, it
would take 1 second for the ball to hit the
ground.  How far the ball travels along
the ground in that one second depends on
its horizontal velocity (see Table 4-1).

Table 4-1.  Gravitational Effects
Horizontal
 Velocity

Distance (@ 1 sec)
Vertical Horizontal

1
2
4
8

16

4.9
4.9
4.9
4.9
4.9

1
2
4
8

16
All values are in meters and meters/second.

Eventually one would come to the
point where the Earth’s surface drops
away as fast as the ball drops toward it.
As (Fig.  4-6) depicts, the Earth’s surface
curves down about 5 meters for every 8
km.

Horizontal Velocity

Fig.  4-5.  Newton’s 2nd Law
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At the Earth’s surface (without
contending for the atmosphere, mountains
or other structures), a satellite would have
to travel at approximately 8 km/sec (or
about 17,500 mph) to fall around the
Earth without hitting the surface; in other
words, to orbit.12

Figure 4-7 shows how differing
velocity affects a satellite’s trajectory or
orbital path.  The Figure depicts a satellite
at an altitude of one Earth radius (6378
km above the Earth’s surface).  At this
distance, a satellite would have to travel
at 5.59 km/sec to maintain a circular orbit
and this speed is known as its circular
speed for this altitude.  As the satellite’s
speed increases, it falls farther and farther
away from the Earth and its trajectory
becomes an elongating ellipse until the
speed reaches 7.91 km/sec.  At this speed
and altitude the satellite has enough
energy to leave the Earth’s gravity and

                                                       
12Because the Earth does have an atmosphere, to
stay in a “stable” orbit objects must be above the
atmosphere—about 94 miles above the Earth’s
surface.  Because the force due to gravity is in-
versely proportional to the square of the distance
between the objects, at 94 miles an object has to
travel at 7.8 km/sec, while the Moon (at 249,000
miles) has to travel at only .9144 km/sec.  (All
these speeds are for circular orbits.)

never return; its trajectory has now
become a parabola, and this speed is
known as its escape speed for this
altitude.  As the satellite’s speed
continues to increase beyond escape
speed its trajectory becomes a flattened
hyperbola.  From a low Earth orbit of
about 100 miles, the escape velocity
becomes 11.2 km/sec.  In the above
description, the two specific speeds (5.59
km/sec and 7.91 km/sec) correspond to
the circular and escape speeds for the
specific altitude of one Earth radius.

The satellite’s motion is described by
Newton’s three laws and his Law of
Universal Gravitation.  The Law of
Universal Gravitation describes how the
force between objects decreases with the
square of the distance between the
objects.  As the altitude increases, the
force of gravity rapidly decreases, and
therefore the satellite can travel slower
and still maintain a circular orbit.  For the
object to escape the Earth, it has to have
enough kinetic energy (kinetic energy is
proportional to the square of velocity) to
overcome the gravitational potential
energy of its position.  Since gravitational
potential energy is proportional to the
distance between the objects, the farther
the object is from the Earth, the less
potential energy the satellite must
overcome, which also means the less
kinetic energy is needed.

ORBIT GEOMETRY

The two-body equation of motion
describes conic sections.  The conic
section an object will follow depends on
its velocity and the magnitude of the
central force.  If an object lacks the
velocity (insufficient kinetic energy) to
overcome the gravitational attraction
(potential energy) then it will follow a
closed path (circle or ellipse).  However,
if the object has enough velocity to
overcome the gravitational attraction then
the object will follow an open path
(parabola or hyperbola) and escape from
the central force.

Fig.  4-6.  Earth’s Curvature

5.59 km\sec

5.59<vel<7.91 km/sec

vel=7.91 km/sec

vel>7.91 km/sec

6378 km

Fig.  4-7.  Velocity versus Trajectory
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Figure  4-8 shows the basic geometry
for the various possible conic sections.
The parameters that describe the size and
shape of the conics are its semi-major
axis a (half of the large axis) and
eccentricity e (the ratio between the
separation of the foci—linear eccentricity
c—and the semi-major axis).

The most common orbit we deal with is
the ellipse.  Figure  4-9 depicts elliptical
geometry and several significant orbital
parameters.
Semi-major Axis (a)—half of the large

axis, a measure of the orbits size, also

the average distance from the
attracting body.

Linear Eccentricity (c)—half of the
distance between the foci.

Eccentricity (e)—ratio of the distance
between the foci (c) to the size of the
ellipse (a); describes the orbit’s shape.

Perigee—the closest point in an orbit to
the attracting body.

Apogee—the farthest point in an orbit to
the attracting body.

These parameters apply to all conic
sections (or orbits).  The circle is a special
case of the ellipse where the foci coincide
(c = 0).  The parabola is the transition
between an ellipse and a hyperbola.  The
parabola represents the minimum energy
escape trajectory.  The hyperbola is also
an escape trajectory; it represents a
trajectory with excess escape velocity.

Table 4-2 shows the values for the
eccentricity (discussed later) for the
various types of orbits.  Eccentricity is
associated with the shape of the orbit.
Energy is associated with the orbit’s size
(for closed orbits).

Table 4-2.  Eccentricity Values
Conic Section Eccentricity (e)

circle

ellipse

parabola

hyperbola

e = 0

0 < e < 1

e = 1

e > 1

CONSTANTS OF ORBITAL
MOTION:  MOMENTUM AND

ENERGY

For some systems, there are basic
properties which remain constant or fixed.
Energy and momentum are two such
properties required for a conservative
system.

Momentum

Momentum is the product of mass
times velocity ( v vp mv= ).  This is the term
for linear momentum and remains
constant internal to the system in every
direction.  In some instances it is more
advantageous to describe motion in
angular terms.  When dealing with
spinning or rotating objects, it is simpler

Fig.  4-8.  Conic Section Geometry

Focus Apogee

Perigee

a

c c
Fig.  4-9.  Elliptical Geometry
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to regard them using equations (also
derived from Newton’s laws) that directly
describe angular motion.  Just as in the
linear sense, corresponding terms apply in
the angular sense:  angular position,
velocity, acceleration, and momentum.
The same rules apply when manipulating
these properties.  An important angular
property in orbital mechanics is angular
momentum.  Angular momentum is the
product of linear momentum times the
radius of revolution.13  This property, like
linear momentum, remains constant
internal to the system for such things as
orbiting objects.

A simple experiment can be performed
illustrating conservation of angular
momentum.  Starting with some object on
the end of a string, the object may be spun
to impart angular momentum upon the
system.  The amount of angular
momentum depends on the object’s mass
and velocity, and the length of our string
(radius): 

v v v
h m(r v )= × .  Now, if the string

is shortened, the object will speed up
(spin faster).  From the above equation,
mass (m) remains constant; angular
momentum (

v
h ) must remain constant as

the radius ( v
r ) decreases, so the object’s

velocity ( v
v ) increases.  This same

principle holds true for orbiting systems.
In an elliptical orbit, the radius is
constantly varying and so is the orbital
speed, but the angular momentum remains
constant.  Hence, there is greater velocity
at perigee than at apogee.

Energy

A system’s mechanical energy can also
be conserved.  Mechanical energy (denoted
by E) is the sum of kinetic energy (KE)
and potential energy (PE): E KE PE= + .
Kinetic energy is the energy associated
with an object’s motion and potential
energy is the energy associated with an
object’s position.  Every orbit has a
certain amount of mechanical energy.  A
                                                       
13Angular momentum is actually the vector cross
product of linear momentum and the radius of
revolution: 

v v v v v
h r p m(r v )= × ⇒ × .

circular orbit’s radius and speed remain
constant, so both potential and kinetic
energy remain constant.  In all other orbits
(elliptical, parabolic and hyperbolic) the
radius and speed both change, and
therefore, so do both the potential and
kinetic energy in such a way that the total
mechanical energy of the system remains
constant.  Again, this results in greater
velocity at perigee than apogee.  If a
satellite’s position and velocity is known,
a satellite’s orbit may be ascertained.
Position determines potential energy
while velocity determines kinetic energy.

COORDINATE REFERENCE
SYSTEMS AND ORBITAL

ELEMENTS

Reference systems are used everyday.
To give or follow directions both the
giver and acceptor have to agree on a
common reference system or the
directions are worthless; left, right, north,
south, the origin and so on, must be
agreed upon.  Once a common reference
has been determined, spatial information
can be traded.  The same must be done
when considering orbits and satellite
positions.  Before positions can be
defined, a common reference must be
agreed upon and understood.  The
reference system used depends on the
situation, or the nature of the knowledge
to be retrieved.

How does one know where satellites
are, were or will be?  Coordinate
reference systems allow measurements to
be defined, resulting in specific
parameters which describe orbits.  A set
of these parameters is a satellite’s orbital
element set.  Two elements are needed to
define an orbit:  a satellite’s position and
velocity.  Given these two parameters, a
satellite’s past and future position and
velocity may be predicted.
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In three-dimensional spaces, it takes
three parameters each to describe position
and velocity.  Therefore, any element set
defining a satellite’s orbital motion
requires at least six parameters to fully
describe that motion.  There are different
types of element sets, depending on the
use.  We are interested in using the
Keplerian, or classical, element set.

The orbital elements tell us four things
we want to know about orbits, namely:

• Orbit size
• Orbit shape
• Orientation

- orbit plane in space
- orbit within plane

• Location of the satellite

Semi-Major Axis (a)

The first parameter describes an orbit’s
size.  The semi-major axis (a) is half of
the large axis of an ellipse.  This is a
significant measurement since it also
equals the average radius, and thus is a
measure of the mechanical energy of the
orbiting object.

Eccentricity (e)

Eccentricity (e) measures the shape of
an orbit.  The shape determines the
positional relationship to the central body,
because the central body must occupy one
of the foci of the ellipse (or other conic
section).  Recall from the orbit geometry
section that eccentricity is a ratio of the
foci separation (linear eccentricity, c) to
the size (semi-major axis, a) of the orbit:

e = c/a

Size and shape relate to orbit
geometry, or what an orbit physically
looks like.  The other orbital elements
deal with orientation of the orbit relative
to a fixed point in space.

Inclination (i)

The first angle used to orient the
orbital plane is inclination (i):  a
measurement of the orbital plane’s tilt.
This is an angular measurement from the
equatorial plane to the orbital plane (0°≤
i ≤ 180°), measured counter-clockwise at
the ascending node while looking toward
Earth (Fig.  4-10).

Inclination is utilized to define several
general classes of orbits.  Orbits with
inclinations equal to 0° or 180° are
equatorial orbits, because the orbital
plane is contained within the equatorial
plane.  If an orbit has an inclination of
90°, it is a polar orbit, because it travels
over the poles.  If 0°≤ i < 90°, the satellite
orbits in the same general direction as the
Earth (orbiting eastward around the
Earth) and is in a prograde orbit.  If
90°< i ≤ 180°, the satellite orbits in the
opposite direction of the Earth’s rotation
(orbiting westward about the Earth) and

is in a retrograde orbit.  Inclination
orients the orbital plane with respect to
the equatorial plane (fundamental plane).

Right Ascension of the Ascending
Node (ΩΩ)

Right Ascension of the Ascending
Node, ΩΩ  (upper case Greek letter
omega), is a measurement of the orbital
plane’s rotation around the Earth.  It is an
angular measurement within the
equatorial plane from the First point of
Aries eastward to the ascending node (0°
≤ ΩΩ ≤ 360°) (Fig.  4-11).

Ascending Node

Inclination 
Angle

Equatorial Orbit

Inclined Orbit

Fig.  4-10.  Inclination Tilt
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The First Point of Aries is simply a
fixed point in space.  The Vernal Equinox
is the first day of spring (in the northern
hemisphere).  However, for the
astronomer, it has added importance
because it is a convenient way of fixing
this principle direction.  The Earth’s

equatorial plane and its orbit about the
Sun provide the principle direction.  The
Earth’s orbit about the Sun is the ecliptic
plane, and this plane passes through the
centers of both the Sun and Earth; the
Earth’s equatorial plane passes through
the center of the Earth, which is tilted at
approximately 23° to the ecliptic.  The
intersection of these two planes forms a
line that passes though Earth’s center and
passes through the Sun’s center twice a
year: at the Vernal and Autumnal
Equinoxes.  The ancient astronomers
picked the principle direction as that from
the Sun’s center through the Earth’s
center on the first day of Spring, the
Vernal Equinox (Fig.  4-12).

The ancient astronomers called this the
First Point of Aries because, at the time,
this line pointed at the constellation Aries.

The Earth is spinning like a top, and like a
top, it wobbles on its axis.  It takes
approximately 25,800 years for the axis to
complete one revolution.  With the axis
changing over time, so does the equatorial
plane’s orientation.  The intersection
between the ecliptic and the equatorial
plane is rotating westward around the
ecliptic.  With this rotation, the principle
direction points to different constellations.
Presently, it is pointing towards Pisces.
The orbital elements for Earth satellites
are referenced to inertial space (a non-
rotating principle direction) so the orbital
elements must be referenced to where the
principle direction was pointing at a
specific time.  The orbital analyst does
this by reporting the orbital elements as
referenced to the mean of 1960 (a popular
reference).  Analysts are currently
updating the systems and are reporting
the elements with respect to the mean of
2000.

Argument of Perigee (ωω)

Inclination and Right Ascension fix the
orbital plane in inertial space.  The orbit
must now be fixed within the orbital
plane.  For elliptical orbits, the perigee is
described with respect to inertial space.

The Argument of Perigee, ωω (lower
case Greek letter omega), orients the orbit
within the orbital plane.  It is an angular
measurement within the orbital plane from
the ascending node to perigee in the
direction of satellite motion (0°≤ ωω ≤
360°) (see Fig.  4-13).

Ascending Node

Line of Nodes

0 degrees = First Point of Aries

0

45

180

225315

135

Inclined Orbit

Fig.  4-11.  Right Ascension of the Ascending Node

Fig.  4-12.  Vernal Equinox

Line of Nodes

Inclined Orbit

Perigee

Argument of Perigee,
Approximately 270 deg

Ascending Node

Fig.  4-13.  Argument of Perigee
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True Anomaly (νν)

At this point all the orbital parameters
needed to visualize the orbit in inertial
space have been specified.  The final step
is to locate the satellite within its orbit.
True Anomaly, νν (lower case Greek letter
nu), is an angular measurement that
describes where the satellite is in its orbit

at a specified time, or Epoch.  It is
measured within the orbital plane from
perigee to the satellite’s position in the
direction of motion (0°≤νν≤360°).

True Anomaly locates the satellite with
respect to time and, in the simplified two
body problem, is the only orbital element

that changes with time.  There are various
conventions for describing True Anomaly
and Epoch.  By fixing one, the other is
also fixed.  Sometimes they will choose νν
to be 0° and give the Epoch as the time of
perigee passage; or they will choose the
Epoch as the moment when the satellite
passes through the ascending node and
provide the value for νν.

There are different types of element
sets.  However, usually only orbital

analysts deal with these sets.  The
Keplerian, or classical element, is the only
element relevant to this chapter.  Table 4-
3 summarizes the Keplarian orbital
element set, and orbit geometry and its
relationship to the Earth.

ORBIT CHARACTERISTICS

Inclination (i) alone defines the four
general orbit classes:

Prograde — 0° ≤ i < 90°

Retrograde — 90° < i ≤ 180°
Equatorial — i = 0°, 180°
Polar — i = 90°

Table 4-3.  Classical Orbital Elements
Element Name Description Definition Remarks

a semi-major
axis

orbit size half of the long axis of the
ellipse

orbital period and energy
depend on orbit size

e eccentricity orbit shape ratio of half the foci
separation (c) to the semi-

major axis

closed orbits:  0 ≤ e < 1
open orbits:  1 ≤ e

i inclination orbital plane’s
tilt

angle between the orbital
plane and equatorial plane,

measured counterclockwise at
the ascending node

equatorial:  i = 0° or 180°
prograde:  0° ≤ i < 90°

polar:  i = 90°
retrograde:  90° < i ≤ 180°

Ω right
ascension of

the
ascending

node

orbital plane’s
rotation about

the Earth

angle, measured eastward,
from the vernal equinox to

the ascending node

0° ≤ Ω < 360°
undefined when i = 0° or

180°
(equatorial orbit)

ω argument of
perigee

orbit’s
orientation in

the orbital plane

angle, measured in the
direction of satellite motion,
from the ascending node to

perigee

0° ≤ ω < 360°
undefined when i = 0° or

180°,
or e = 0 (circular orbit)

ν true
anomaly

satellite’s
location in its

orbit

angle, measured in the
direction of satellite motion,
from perigee to the satellite’s

location

0° ≤ ν < 360°
undefined when e = 0

(circular orbit)
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Other common orbits include those
used for communication, weather and
navigation:

Geostationary Period =23hrs56min
i = 0°
e = 0

GeosynchronousPeriod =23hrs56min
Molniya Period =11hrs58min

i = 63.4°
e = .72

Sun-synchronousPeriod=1hr41min
i = 98°

Semi-synchronous-Period =11hrs58min

GROUND TRACKS

The physics of two-body motion
dictates the motion of the two will lie
within a plane (two-dimensional motion).
The orbital plane intersects the Earth’s
surface forming a great circle.  A
satellite’s ground track is the intersection
of the line between the Earth’s center and
the satellite and the Earth’s surface; this
point is also called the satellite subpoint.
The ground track, then, is the path the
satellite subpoint traces on the Earth’s
surface over time (Fig.  4-14).  However,
the Earth does, in fact, rotate.  With the
Earth rotating under the satellite, the
intersection of the orbital plane,14 and the
Earth’s surface is continually changing.

                                                       
14Except for equatorial orbits, whose orbital plane
is contained within the equatorial plane.

The ground track is the expression of
the relative motion of the satellite in its
orbit to the Earth’s surface rotating
beneath it.  Because of this relative
motion, ground tracks come in almost any
form and shape imaginable.  Ground track
shape depends on many factors:

Inclination i
Period P
Eccentricity e
Argument of Perigee ωω

Inclination defines the tilt of the orbital
plane and therefore, defines the maximum
latitude, both North and South, which will
be directly beneath the satellite.

The period defines the ground track’s
westward regression.  Remember that with
a non-rotating Earth, the ground track
would be a great circle.  Because the Earth
does rotate, by the time the satellite
returns to the same place in its orbit after
one revolution, the Earth has rotated
eastward by some amount, and the ground
track looks like it has moved westward on
the Earth’s surface (westward regression).
The orientation of the satellite’s orbital
plane does not change in inertial space, the

Earth has just rotated beneath it.  The time
it takes for the satellite to orbit (its orbital
period) determines the amount the Earth
rotates eastward and hence its westward
regression.

The Earth rotates through 360° in 24
hours, giving a rotation rate of 15°/hr.15  If

                                                       
15In reality, the 24-hour rotation rate is with re-
spect to the Sun and is called the solar day.  The
rotation rate with respect to inertial space (the
fixed stars, or background stars) is actually 23 hrs
56 min and is called the sidereal day.

Fig.  4-14.  Ground Track

1
2

3

Fig.  4-15.  Earth’s Rotation Effects
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a satellite’s ground trace regresses 22.5°,
then we know its period is 90 mins (22.5°
/(15°/hr) = 1.5 hrs).  Figure 4-15 shows
the effect of the Earth’s rotation on the
ground track.  Westward regression is the
angle through which the Earth has rotated
underneath the satellite during the time it
takes the satellite to complete one orbit.

Eccentricity affects the ground track
because the satellite spends different
amounts of time in different parts of its
orbit (it’s moving faster or slower).  This
means it will spend more time over certain
parts of the Earth than others.  This has
the effect of creating an unsymmetrical
ground track.  It is difficult to determine
how long the satellite spends in each
hemisphere by simply looking at the
ground trace.  The time depends on both
the length of the trace and the speed of the
satellite.

Argument of perigee skews the ground
track.  For a prograde orbit, at perigee the
satellite will be moving faster eastward
than at apogee; in effect, tilting the ground
track.

A general rule of thumb is that if the
ground track has any portion in the
eastward direction, the satellite is in a
prograde orbit.  If the ground trace does

not have a portion in the eastward
direction, it is either a retrograde orbit or
it could be a super-synchronous prograde
orbit.

Relative Motions

Because the Earth is a rotating “rigid
body” the velocity of points on the surface
is different depending on their distance
from the Earth’s axis of rotation.  In other
words, points on the equator have a
greater eastward velocity than points north
and south of the equator.

Figure 4-16 conceptualizes a geo-
stationary orbit and its ground track.  A
satellite in a geostationary orbit has the
same orbital period as the Earth’s
rotational period; its inclination is 0° and
its eccentricity is 0.  With this information,
the ground track will remain in the
equatorial plane, the westward regression
will be 360° and the satellite’s speed never
changes.  Therefore, the ground track will
be a point on the equator.

Now take the same orbit and give it an
inclination of 45° (Fig.  4-17).

The period and eccentricity remain the
same.  The westward regression will be
360° so the ground trace will retrace itself
with every orbit.  The ground trace will

also vary between 45° North and 45°
South. The apparent ground trace looks
like a figure eight on the earth's surface;
however, this is probably the simplest
case.  If the orbital parameters are varied
(such as eccentricity and argument of
perigee), the relative motions of the
satellite and the Earth’s surface can
become quite complicated.  For orbits with
small inclinations, the eccentricity and

Fig.  4-16.  Geostationary Orbit/Ground Track

Fig.  4-17.  Ground Traces of Inclined,
Circular, Synchronous Satellites



AU Space Reference Guide Second Edition 8/99

4 - 18

argument of perigee dominate the effect of
the Earth’s surface speed at different
latitudes and can cause the ground track to
vary significantly from a symmetric figure
eight.  These parameters can be combined
in various ways to produce practically any
ground track.

The semi-synchronous orbit (used by
the Global Positioning System) also
provides a unique ground track.  This
orbit, with its approximate 12-hour period,
repeats twice a day.  Since the Earth turns
half way on its axis during each complete
orbit, the points where the Sinusoidal
ground tracks cross the equator coincide

pass after pass and the ground tracks
repeat each day (Fig.  4-18).

Figure  4-19 shows a typical Molniya
orbit that might be used for northern
hemispheric communications.  The
Russians are credited with the discovery of
this ingenious orbit.  With the high degree
of eccentricity the satellite travels slowly at
apogee and can hang over the northern
hemisphere for about two thirds of its

period.  Since the period is 12 hours, the
ground track retraces itself every day,
much the same as the semi-synchronous
orbit.

Figure 4-20 shows a representative
sun-synchronous orbit.  In this case, the
orbital elements represent a DMSP
(Defense Meteorological Satellite
Program) satellite.  The satellite is in a
slightly retrograde orbit; therefore, the
satellite travels east to west along the
track..

A sun-synchronous orbit is one in which
the orbital plane rotates eastward around
the Earth at the same rate that the Earth
orbits the Sun.  So, the orbit must rotate
eastward around the Earth at a little less
than 1°/day {(360°/year)/(365.25 days/
year) = .986°/day}.  This phenomenon
occurs naturally due to the oblateness of
the Earth (see the section on
perturbations).

Sun-synchronous orbits can be achieved
at different altitudes and inclinations.
However, all the inclinations for sun-
synchronous satellites are greater than 90°
(retrograde orbits).  Figure  4-21 plots

High
Inclination

12,500 Miles Altitude

Fig.  4-18.  Semi-synchronous Orbit

5     4    3     2   15     4    3     2   1

Fig.  4-20.  Sun-synchronous Orbit

Highly
Elliptical

Inclination (63.4°°/116.6°° )
200-23,800 Mile Altitude

Fig.  4-19.  Molniya Orbit
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inclination versus altitude for sun-
synchronous orbits.

LAUNCH CONSIDERATIONS

The problem of launching satellites
comes down to geometry and energy.  If
there were enough energy, satellites could
be launched from anywhere at any time
into any orbit.  However, as energy is
limited, the most cost-efficient methods
must be used (which usually equates to the
most energy efficient).

When a satellite is launched, it is
intended to end up in a specific orbit, not
only with respect to the Earth, but often
with respect to an existing constellation.
Also, the geometry of the planets must be
taken into consideration when launching
an interplanetary probe.  Launch windows
arise due to energy limitations.  Systems
are designed to minimize the energy
margin because it is less expensive (in
most situations).16

When energy is minimized, launch
trajectories that take less energy must be
selected.  This limits launch opportunities
to where the launch site and trajectory
geometry provides the least energy path.

Launch site latitude and orbit inclination
are two important factors affecting how
much energy boosters have to supply.
Orbit inclination depends on the satellite’s
mission, while launch site latitude is, for

                                                       
16There are some situations when it is less expen-
sive to use an existing system with extra energy
because a lower class booster will not meet the
mission needs.  In this case, there is an extra mar-
gin and the launch windows are larger.

the most part, fixed (to our existing launch
facilities).17  Only minimum energy
launches (direct launch) will be addressed.
A minimum energy, or direct launch, is
one in which a satellite is launched directly
into the orbital plane (i.e., no plane change
or inclination maneuver).

By looking at the geometry, the launch
site must pass through the orbital plane to
be capable of directly launching into that
plane.  Imagine a line drawn from the
center of the Earth through the launch site
and out into space.  After a day, this line
produces a conical configuration due to
the rotation of the Earth.  A satellite can
be launched into any orbital plane that is
tangent to, or passes through, this cone.
Thus, the lowest inclination that can be
achieved by directly launching is the
latitude of the launch site.

If the orbital plane’s inclination is
greater than the launch site latitude, the
launch site will pass through the orbital
plane twice a day, producing two launch
windows per day.  If the inclination of the
orbital plane is equal to the launch site
latitude, the launch site will be coincident
with the orbital plane once a day,
producing one launch window a day.  If
the inclination is less than the launch site
latitude, the launch site will not pass
through, or be coincident with the orbital
plane at any time, and so there will not be
any launch windows for a direct launch.

A simplified model for determining
inclination from launch site latitude and
launch azimuth is:18

( ) ( ) ( )AzLi sincoscos •=
i = inclination
L = launch site latitude
Az = launch azimuth

The cosine of the latitude reduces the
range of possible inclinations and the sine
of the azimuth varies the inclination within
                                                       
17There are various schemes to get around the
problem of fixed launch sites:  air launch, sea
launch, and portable launch facilities, for in-
stance.
18This is a simplified model because it ignores the
Earth’s rotation, which has a small effect.

Fig.  4-21.  Inclination versus Altitude
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the reduced range.  When viewing the
Earth and a launch site, it is possible to
launch a satellite in any direction.  The
orbital plane must pass through the launch
site and the center of the Earth.

For launches due east (no matter what
the launch site latitude) the inclination will
equal the launch site latitude.  For
launches on any other azimuth, the
inclination will always be greater than the
launch site latitude.

Just as the launch site latitude
determines the minimum inclination
(launching due east), it also determines the
maximum inclination by launching due
west.  The maximum inclination is 180
minus the latitude.

The actual launch azimuths allowed (in
most countries) are limited due to the
safety considerations of not launching over
populated areas, which further limits the
possible inclinations from any launch site.
However, the inclination can change after
launch by performing an out of plane
maneuver (see next section).

Launch Delta-V

When a satellite is launched, energy is
imparted to it. The two tasks of increasing
the satellite’s potential and kinetic energies
must be accomplished.  Potential energy is
increased by raising the satellite above the
atmosphere (increasing its altitude by at
least 90-100 miles).  In order to maintain a
minimum circular orbit at that altitude, the
satellite has to travel about 17,500 mph.
Due to the Earth’s rotation, additional
kinetic energy must be supplied to achieve
this orbital velocity (17,500 mph).  The
starting velocity at the launch sites vary
with latitude.  It ranges from zero mph at
the poles to 1,037 mph at the equator.

If a satellite is launched prograde from
the equator starting with 1,037 mph, only
16,463 mph must be supplied.  If launched
retrograde from the equator, starting at
1,037 mph in the wrong direction, 18,537
mph must be supplied.  Launching with the
Earth’s rotation saves fuel and increases
the payload for any given booster.

In retrospect, there are substantial
energy savings when locating launch sites
close to the equator and launching in a
prograde direction.

ORBITAL MANEUVERS

It is a rare case indeed to launch
directly into the final orbit.  In general, a
satellite’s orbit must change at least once
to place it in its final mission orbit.  Once a
satellite is in its mission orbit,
perturbations must be counteracted, or
perhaps the satellite must be moved into
another orbit.

As was previously mentioned, a
satellite’s velocity and position determine
its orbit.19  Thus, one of these parameters
must be changed in order to change a
satellite’s orbit.  However, the only option
is to change the velocity, since position is
relatively constant.  By changing the
velocity, the satellite is now in a different
orbit.  Since gravity is conservative, the
satellite will always return to the point
where it performed the maneuver
(provided it doesn’t perform another
maneuver before returning).

Mission Considerations

Since both position and velocity
determine a satellite’s orbit, and many
different orbits can pass through the same
point, the velocity vectors must differ20 to
result in a different orbit while passing
through the same point.

When an orbit is changed through its
velocity vector, a delta-v (∆∆v) is
performed.  For any single impulse orbital
change the desired orbit must intersect the
current orbit, otherwise it will take at least
two ∆∆vs to achieve the final orbit.

                                                       
19The position and velocity correspond to the
force of gravity and the satellite’s momentum.
Knowing the forces on the satellite and its mo-
mentum, we can apply Newton’s second law and
predict its future positions (in other words, we
know its orbit).
20 Remember that velocity is a vector — it has
both a magnitude and a direction.
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When the present and desired orbits
intersect, a ∆∆v is employed to change the
satellite’s velocity vector.  The ∆∆v vector
can be determined by subtracting the
present vector from the desired vector.
The resultant velocity vector is the ∆∆v
required to get from one point to another.

PERTURBATIONS

Perturbations are forces which change
the two-body problem.  These forces have
a variety of causes/origins and effects.
The common effect is to alter the orbit
from the classical two-body problem.
These forces are named and categorized in
an attempt to model their effects.  The
major perturbations are:

• Earth’s oblateness;
• Atmospheric drag;
• Third-body effects;
• Solar wind/radiation pressure;
• Electromagnetic drag.

Earth’s Oblateness

The Earth is not a perfect sphere.  It is
somewhat misshapen at the poles and
bulges at the equator.  This squashed
shape is referred to as oblateness.  The
North polar region is more pointed than
the flatter South polar region, producing a
slight “pear” shape.  The equator is not a
perfect circle; it is slightly elliptical.  The
effects of Earth’s oblateness are
gravitational perturbations, which have a
greater influence the closer a satellite is to
the Earth.  This bulge is often modeled
with complex mathematics and is
frequently referred to as the J2 effect.21

For low to medium orbits, these influences
are significant.

One effect of Earth’s asymmetry is
nodal regression.  Westward regression
due to Earth’s rotation under the satellite
was discussed in the ground tracks section.
Nodal regression is an actual rotation of

                                                       
21J2 is a constant describing the size of the bulge
in the mathematical formulas used to model the
oblate Earth.

the orbital plane in inertial space about the
Earth – the right ascension changes.  If the
orbit is prograde, the orbital plane rotates
westward around the Earth (right
ascension decreases); if the orbit is
retrograde, the orbital plane rotates
eastward around the Earth (right ascension
increases).

In most cases, perturbations must be
counteracted.  However, in the case of
sun-synchronous orbits, perturbations can
be advantageous.  In the slightly
retrograde sun-synchronous orbit, the
angle between the orbital plane and a line
between the Earth and the Sun needs to
remain constant.  As the Earth orbits
eastward around the Sun, the orbital plane
must rotate eastward around the Earth at
the same rate.  Since it takes 365 days for
the Earth to orbit the Sun, the sun-
synchronous orbit must rotate about the
Earth at just under one degree per day.
The oblateness of the Earth perturbs the
orbital plane by nearly this amount.

A sun-synchronous orbit is beneficial
because it allows a satellite to view the
same place on Earth with the same sun
angle (or shadow pattern).  This is very
valuable for remote sensing missions
because they use shadows to measure
object height.22

Another significant effect of Earth’s
asymmetry is apsidal line rotation.  Only
elliptical orbits have a line of apsides and
so this effect only affects elliptical orbits.
This effect appears as a rotation of the
orbit within the orbital plane; the argument
of perigee changes.  At an inclination of
63.4° (and its retrograde compliment,
116.6°), this rotation is zero.  The Molniya
orbit was specifically designed with an
inclination of 63.4° to take advantage of
this perturbation.  At a smaller inclination
(but larger than 116.6°), the argument of
perigee rotates eastward in the orbital
plane; at inclinations between 63.4° and
116.6°, the argument of perigee rotates

                                                       
22With a constant sun angle, the shadow lengths
give away any changes in height, or any shadow
changes give clues to exterior configuration
changes.
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westward in the orbital plane.  This could
present a problem for non-Molniya
communications satellites providing polar
coverage.  If the apogee point rotated
away from the desired communications
(rotated from the northern to southern
hemisphere), the satellite would be useless.
Taking advantage of the zero effect at
63.4° inclination improves stability of the
Molniya orbit and limits the need for
considerable on-board fuel to counteract
this rotation.

The ellipticity of the equator has an
effect that shows up most notably in
geostationary satellites (also in inclined
geosynchronous satellites).  Because the
equator is elliptical, most satellites are
closer to one of the lobes and experience a
slight gravitational misalignment.  This
misalignment affects geostationary
satellites more because they view the same
part of the Earth’s surface all the time,
resulting in a cumulative effect.

The elliptical force rotates the
geostationary satellite one direction or the
other around the Earth.  The direction
depends on its location.  There are two
stable points at 75 East and 105 West, and
two unstable stable points 90° out (165
East and 5 West).23

Atmospheric Drag

The Earth’s atmosphere does not
suddenly cease; rather it trails off into
space.  However, after about 1,000 km
(620 miles), we can disregard its
minuscule effects.  Generally speaking,
atmospheric drag can be modeled in
predictions of satellite position.  The
current atmospheric model is not perfect
because of the many factors affecting the
upper atmosphere, such as the Earth’s
day-night cycle, seasonal tilt, variable solar
distance, fluctuation in the Earth’s
magnetic field, the Sun’s 27-day rotation
and the 11-year sun spot cycle.  The drag
force also depends on the satellite’s

                                                       
23A stable point is like a marble in the bottom of a
bowl; an unstable stable point is like a marble
perfectly balanced on the top of a hill.

coefficient of drag and frontal area, which
varies widely between satellites.

The uncertainty in these variables cause
predictions of satellite decay to be
accurate only for the short term.  An
example of changing atmospheric
conditions causing premature satellite
decay occurred in 1978-1979, when the
atmosphere received an increased amount
of energy during a period of extreme solar
activity.  The extra solar energy expanded
the atmosphere, causing several satellites
to decay prematurely, most notably the
U.S. space station SKYLAB.

The highest drag occurs when the
satellite is closest to the Earth (at perigee),
and has a similar effect in performing a
delta-V at perigee; it decreases the apogee
height, circularizing the orbit.  On every
perigee pass, the satellite looses more
kinetic energy (negative delta-V),
circularizing the orbit more and more until
the whole orbit is experiencing significant
drag, and the satellite spirals in.

Third Body Effects

According to Newton’s law of
Universal Gravitation, every object in the
universe attracts every other object in the
universe.  This force affects our satellites’
orbits.  The farther a satellite is from the
Earth, the greater the third body forces are
in proportion to Earth’s gravitational
force, and therefore they have a greater
effect on the high and deep-space
satellites.  The greatest third body effects
come from those bodies that are very
massive and/or close such as the Sun,
Jupiter and the Moon.

Radiation pressure

The Sun is constantly expelling atomic
matter (electrons, protons, Helium nuclei).
This ionized gas moves with high velocity
through interplanetary space and is known
as the solar wind.  The satellites are like
sails in this solar wind, alternately being
speeded up and slowed down, producing
orbital perturbations.
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Electromagnetic Drag

Satellites are continually traveling
through the Earth’s magnetic field.  With
all their electronics, satellites produce their
own localized magnetic fields which
interact with the Earth’s, causing
unwanted torques.  In some instances,
these torques are advantageous for
stabilization.  Satellites are basically a mass
of conductors. Passing a conductor
through a magnetic field causes a current
in the conductor, producing electrical
energy.  Some recent experiments use a
long tether in space for, among other
reasons, using Earth’s magnetic field to
generate electrical power.

The electrical energy generated by the
interaction of the satellite and the Earth’s
magnetic field comes from the satellite’s
kinetic energy about the Earth.  The
satellite looses orbital energy just as it
does with atmospheric drag due to this
energy transference.  The magnetic field is
strongest and satellites travel faster closer
to the Earth, resulting in the largest effect
on low orbiting satellites.  However, the
overall effect due to electromagnetic
forces is quite small.

DEORBIT AND DECAY

So far the concern has been with
placing and maintaining satellites in orbit.

When no longer useful, satellites must be
removed from their present orbit.
Sometimes natural perturbations take care
of disposal, but not always.

For satellites passing close to the Earth
(low orbit or highly elliptical orbits),
satellites can be programmed to re-enter,
or they may re-enter autonomously.
Deliberate re-entry of a satellite with the
purpose of recovering the vehicle intact is
deorbiting.  This is usually done to recover
something of value:  people, experiments,
film, or the vehicle itself.  The natural
process of spacecraft (or any debris –
rocket body, payload, or piece) eventually
re-entering Earth’s atmosphere is decay.

In some situations, the satellites are in
such stable orbits that natural
perturbations will not do the disposal job
for us.  In these situations, the satellite
must be removed from the desirable orbit.
To return a satellite to Earth without
destroying it takes a considerable amount
of energy.  Obviously, it is impractical to
return old satellites to Earth from a high
orbit.  The satellite is usually boosted into
a slightly higher orbit to get it out of the
way, and there it will sit for thousands of
years.

TOC



AU Space Reference Guide Second Edition 8/99

4 - 24

REFERENCES

Bates, Roger R., Jerry E. White, and Donald D. Mueller.  Fundamentals of
Astrodynamics.  New York:  Dover Publications, Inc., 1971.

Koestler, Arthur.  The Sleepwalkers:  A History of Man’s Changing Vision of the
Universe.  New York:  Universal Library, Grosset & Dunlab, 1976.


	HISTORY
	ORBITAL MOTION
	ORBIT GEOMETRY
	CONSTANTS OF ORBITAL MOTION
	COORDINATE REFERENCE SYTEMS AND ORBITAL ELEMENTS
	ORBIT CHARACTERISTICS
	GROUND TRACKS
	LAUNCH CONSIDERATIONS
	ORBITAL MANEUVERS
	PERTURBATIONS
	DEORBIT AND DECAY

